Celebrating 30 years.

Resource Center

Articles, datasheets, technical data, cross reference guides and more. All in one place.


Tin Whiskers and Chip Components

Posted by Mike Randall on December 23, 2016


 What are Whiskers?
“Whiskers” are protrusions that grow from a metal film over time.  They can achieve high aspect ratios, growing to considerable lengths and may result in electrical interconnection of adjacent terminals.  This can happen when a whisker grows from one terminal to another, as in the case of fine pitch electronics, or when a whisker grows, then shears from its source and lands between two terminals interconnecting them electrically.  While this is rare, it has caused considerable concern in the electronics community.

Sn Whiskers
Tin whiskers are Sn protrusions that grow from a tin film.  They may occur on the terminals of chip components such as multilayer ceramic capacitors (MLCCs), chip resistors, chip inductors, varistors, etc.  They are observed much less frequently than in the past as Sn finishes have evolved as manufacturers’ knowledge of Sn whiskers and how to avoid them has developed.  

The micrographs above illustrate Sn whiskers at three different magnifications.  At lower magnification (left), they may appear as “fuzz” on the surface of the terminations.  At increased magnification (center), they may present as high aspect ratio protrusions or “whiskers” that grow over time.  At high magnification (right), they typically appear striated on the exterior.  Some of the striae may also have horizontal ridges which have been associated with thermal cycling or other episodic events resulting in whisker growth. 

How They Form
Formation of Sn whiskers is related to stress (usually compressive stress) within the film from which they propagate.  Stress can be caused by several different sources, such as residual stress from the film deposition process (typically electroplating), or from the growth of intermetallic (IMC) phases below the surface of the film as described in a previous post on this blog, or by thermal cycling, or by bending stress in plated leads in the case of leaded components, or the like.  These stresses act to extrude the whiskers out from the plated film.  Subsequently, much effort has been expended in learning how to reduce or eliminate these film stresses in electroplated Sn films.

Where They Occur
Sn whiskers associated with reflow mounted or wave solder mounted chip components are rare because the stresses formed in the electroplated tin film during the plating process are relieved during the soldering process.  They are more common when the mounting technique used does not provide an opportunity for stress relief, such as when mounting with conductive epoxy, and conductive epoxy mounting is mainly where Sn whiskers have been observed in relation to surface mounted chip components.

Sn whiskers have also been observed in unmounted chip components.  This was more prevalent in the early days of conversion from Pb/Sn finishes to Sn finishes for RoHS, but is much less frequent in contemporary chip components as manufacturers have developed low stress Sn finishes through the development of low stress tin electroplating chemistries and processes.  These electrodeposited film chemistries are typically low in carbon and other impurities, such as Zn, and are “matte” in appearance due to relatively large and uniform Sn grain size (typically ~5 µm on average).  With these developments suppliers have been successful in eliminating the incidence of harmful Sn whiskers.  

Solutions and Conclusion
Through development of low stress plated Sn finishes, the worry of Sn whiskers has been eliminated with regard to chip components, if you use a supplier who has conquered plated film stress.  Sn whiskers will also not likely be an issue if you use a solder reflow process or wave soldering to mount your chip components.  If you use conductive epoxy mounting and you still observe Sn whiskers, you may want to heat treat the chip components using a mild heat treatment near the melting point of Sn (~232C).  Use of conformal coating on assemblies will also eliminate whisker-related problems.  I hope that helps.  May you never see another Sn whisker in your assemblies…TTFN!     ;  )   

* Micrographs courtesy of NASA 



Tags: inductor, Resistor, RoHS

Deviant Behavior Part 1: CRLZ Gone Wild

Posted by Mike Randall on June 09, 2014


Hey circuit designers!  Have you ever wondered why a circuit that you designed just didn’t act like you thought it should?  Well, that could be due to many reasons; several of which may be related to the capacitors that you selected for your circuit.  In this case you could be a victim of “deviant behavior”…behavior that differs from a norm or from accepted standards.  In this case, the standards of interest would be those set by the mythical “perfect capacitor”…the Unicorn of passive electronics. 

An Imperfect World

You see, like all electronic components, capacitors are not perfect.  The type of capacitor that you select will determine how far from perfection, or deviant the capacitor’s performance will be in your application.  Each real capacitor is a device that has not only a characteristic capacitance (C), but a characteristic resistance (R, typically termed equivalent series resistance or ESR) and an inductance (L, typically termed equivalent series inductance or ESL).  These “parasitics” can adversely affect circuit performance, but in certain situations may be used to your advantage. 

I remember how one of my sarcastic coworkers used to joke about “parasitics.”  He would say, “Shoot!  I don’t understand why our customers are so unhappy about parasitics; we ship them a free inductor and a free resistor with every capacitor!” J

Curves Ahead

Simply put, parasitics affect impedance (Z) as frequency is changed (i.e., the “Z curve”), which may affect circuit performance.  A perfect capacitor exhibits Z = 1/(2πfC) where f is frequency.  As C is increased, Z is reduced in a manner that is linear on a log-log scale (see left side of graphic above).  As f increases, Z of a perfect capacitor continues to decrease in this manner out to infinite frequency.  With a real capacitor, however, C “runs into” either R (typically ESR) or L (ESL) as f is increased, establishing either a “flat” or a minimum in the impedance curve.  If ESR is relatively low, L will largely determine this minimum and the Z curve will be V or gull wing shaped in the case of extremely low ESR.  If ESR is relatively high, R will establish a “floor” or “flat” in the Z curve over a relatively broad range of f.  At higher frequencies L dominates, as Z is ~2πfL, resulting in increasing Z as f is increased in a manner that is linear on a log-log scale (see right side of graphic above).   

You Got to Know When to Hold’em…and Know When to Fold’em

Prudent selection of capacitor type may be useful in achieving a desirable Z curve for your application.  For example, use of capacitors having moderate or high ESR, combined with low ESL, typically results in a relatively flat Z curve.  This may be useful for power delivery designs such as power delivery networks (PDNs), as a relatively “flat” impedance curve is often desirable.  Capacitors, such as controlled ESR reverse geometry or controlled ESR interdigitated capacitors (IDCs) or face down solid electrolyte tantalum (Ta) or low ESL solid electrolyte aluminum (Al) capacitors may be useful in these applications.  On the other hand, use of capacitors having very low ESR combined with low L, may be useful for inline high pass filter designs or for designs requiring high speed decoupling.  Discoidal ceramic capacitors are typically used for high pass filtering, and standard IDC or reverse geometry capacitors may be useful in filtering or high speed decoupling applications.   More recently the design community has favored use of numerous, small case size MLCC in parallel for high speed decoupling designs, as these MLCCs have moderate-to-low ESL (L), take up little space and can be used local to the decoupled device, and are relatively inexpensive.  Additionally, use of capacitors having very low ESR, combined with moderate-to-high L, may be useful in band pass filter designs. Standard MLCCs typically “fit the bill” here, and low loss (high Q), tight tolerance, type 1 dielectric capacitors such as C0G MLCC are typically used here for consistency in resonance frequency (the frequency at which C and L cross if R is 0 or is nearly 0).

A Little Help from Your Friends

Capacitor manufacturers spend significant development resources optimizing the above qualities for different applications.  With regard to parasitics, it’s all about the design, the dielectrics and the electrodes.  For example, in order to minimize ESR, MLCC developers will take advantage of high active layer counts and relatively thick electrodes.  To maximize ESR in an MLCC, special electrode designs may be used in IDC MLCC or resistors may be put in series with other MLCC using specialized termination materials or the like.   For low ESR, special low resistivity internal electrode materials, such as copper or specialized electrode designs may be used. 

Get Real

All combined, these materials and design factors may be used alone, or in combination, to optimize the C, R and L properties of a given capacitor design for one or more specific application(s) requiring a characteristic impedance (Z) curve, making it important for circuit designers to model their circuits with the real (C, R, L and Z) properties of the capacitors selected for their designs.  That way, you may be able to take advantage of that free resistor and inductor that is included with each capacitor! J (At the very least you will be able to compensate for their idiosyncraZies in your design).  Next time we will discuss part 2 of Deviant Behavior, but as Winnie the Pooh would say, “Ta ta for now!” (TTFN :-)) 

Tags: inductor, Resistor, capacitor, high-q

Subscribe to Resource Center Updates