Celebrating 30 years.

Resource Center

Articles, datasheets, technical data, cross reference guides and more. All in one place.

Articles

High Voltage MLCCs: Shocking Revelations!

Posted by Mike Randall on September 25, 2014

18

This is Part 1 of a Three Part Series

  • Part 1:It’s What’s Inside that Counts
  • Part 2:Judging a Book by Its Cover:Don’t Forget the Outside
  • Part 3:It Ain’t the Volts, It’s the Amps:Some Applications and Considerations

Greetings fellow components users!  I hope that you have been well.  Have you ever had the need for a high voltage surface mount capacitor, but weren’t sure how to select the right one, or wondered how they are made, or were concerned about the factors you need to be careful of when designing them into your circuit?    In my next three posts, I will try to provide some “enlighteningment” on the subject. 

Surface mount high voltage MLCCs usually appear to be identical to standard MLCCs.   High voltage MLCCs are typically available in EIA size from 0603 to 2225 or larger with voltage ratings from 200V to 5,000V or more.  Smaller case high voltage MLCCs typically have lower maximum rated voltages (VRated) as the external terminals tend to be closer to each other in comparison to larger case high voltage MLCCs. 

High voltage MLCCs are generally available with Class 1 (C0G) or Class 2 (Ferroelectric X7R) ceramic dielectrics with tolerances as good as +/-5% or better, to as wide as +/-20% or higher.  Because of the generally thicker dielectric thicknesses used in the design and potentially the “cascade” or “floating electrode” type designs used, the maximum capacitance values available are significantly lower than analogous low voltage rated MLCCs.   Generally available capacitance values range from ~1 pF to 2.2 µF or higher.   The ESR is also typically a little higher compared to analogous standard MLCCs, but is still quite low (typically ≤10 mΩ).  So what makes high voltage MLCCs different from standard MLCCs?

The More Things Change, The More They Stay The Same

From the outside, high voltage MLCCs look pretty much identical to standard MLCCs, but as my Momma used to tell me, “it’s what’s inside that counts.”  It seems that it should be straight forward to design high voltage MLCCs.  Just increase the dielectric thickness (DT) to enable the desired voltage rating.  The rate of increase in DT is typically about 200 to 250 V/mil (or about 7.8 to 10 V/µm).  We also know that thicker DT results in less capacitance per unit volume (C/V), having a DT-2 relationship as shown in Figure 1 below.  So if we double DT, capacitance is quartered and VRated is doubled.  Simple…right?  Wait just a second!  As it turns out, it’s not quite that simple.

Figure 1.  Approximate normalized capacitance vs. dielectric thickness for standard configuration MLCC

VRated of the ceramic dielectrics used in MLCCs typically demonstrates linear or nearly linear behavior to voltages as high as ~1,000 to ~1,500 V.  But at higher voltages, a different VRated vs. dielectric thickness relationship is observed.  An example of this is given in Figure 2 below.

Figure 2.  Dielectric thickness vs. rated voltage for a typical ceramic dielectric used in MLCCs

For the hypothetical example given in Figure 2, a rated voltage of 1,500 V would require ~10 mil (~250 µm) DT.  This would reduce C/V by a factor of ~100 in comparison to a 250VRated, 1 mil DT MLCC!  If we could in some way maintain the initial linear relationship (~200 to 250 V/mil) we could have used DT of ~6 mil and C/V would have suffered only about a 35 fold reduction in comparison to a 250VRated, 1 mil DT device (i.e., the resulting maximum C/V would be almost 3 times as high in comparison to the case of 10 mil DT).   There must be a way to maintain this relationship, but how?

It’s What’s Inside That Counts

Well, it just so happens that there is a way.  Recalling our freshman EE course, we know that capacitors in parallel are additive, while in series behave in a manner defined by the relation:

We also know that, if all of the capacitors that are in series have the same capacitance value, the above simplifies to:*Cn = Capacitance of capacitor n

formula2
*n is the number of capacitors in series, each having capacitance value Cn
Also, voltage ratings of capacitors in series increase linearly following the relation: 

*n is the number of capacitors in series, each having voltage rating Vn

 Wow!  Using the above relationships, we can increase VRated linearly with a relatively small decrease in capacitance (~C/n).  If only we could fit multiple capacitors in series within a single MLCC…but how?  Well, the structure of a standard configuration MLCC puts multiple capacitors in parallel configuration, so why can’t a clever designer put several capacitors in series configuration, within an MLCC as well?  It just so happens that, long ago, a very clever MLCC designer did exactly that and these floating electrode or cascade electrode design MLCCs have been available for high voltage applications for decades.  Here’s to you, Mr./Mrs./Ms. Clever Designer!

The Details

The basic floating electrode (FE) or cascade electrode designs are illustrated in comparison to a standard electrode configuration design MLCC in Figure 3 below.  From the illustration it is evident that floating electrodes placed between externally connected electrodes result in 2 cascades (or capacitors) per each floating electrode segment used in the design.   One and two FE (or 2 and 4 cascade) designs are illustrated in the figure.  From the figures, we can also see that the electrode active area (A) is reduced with each cascade as well, but if we ignore the dimension of the additional internal margins, the active area is approximately halved for each floating electrode and the rated voltage increases linearly with each internal capacitor in series.

 Because of the reduction in A and the series effect described above, the resulting C/V (ignoring the additional internal margin areas created with each FE) is proportional to 1/n2 (where n is the number of cascades created).  This means that VRated can increase linearly as the number of FEs is increased, with a C/V penalty that is pretty much analogous to the C/V penalty experienced with a standard capacitor configuration MLCC that utilizes increased DT to achieve desired VRated in the linear region below ~1,000 to 1,500 V (i.e., according to the blue line in Figure 2 above).   So now we have a solution to our problem!

Additionally, FE designs largely reduce or eliminate the possibility of short-type failures.  This is because all of the cascades or internal capacitors must fail in order to create a short-type failure.  Thus failure due to flexure cracking or the like is largely mitigated in most cases.  This makes FE type MLCCs also quite valuable in performance critical applications such as across a battery line or the like.

Figure 3.  Illustration of standard vs. floating internal electrode configurations

The Particulars

We can use FE or cascade electrode design to increase VRated with minimized impact on C/V.  As each FE will have an additional margin area associated with it, the impact of additional margins on C/V in small case MLCCs (typically EIA 0603 and possibly 0805) may be prohibitive, but for larger MLCCs (e.g., EIA 1206 to 2225) the impact is relatively small.  As in Figure 4 below, C/V decreases commensurate with (1/2n2), where n is the number of FEs within the design.  VRated also increases with 2n as does ESR.  The effect on ESR is largely compensated however, as the two or more internal capacitors typically have more electrodes in each internal capacitor stack (N), and since the aspect ratio of said electrodes within each of the internal capacitors will have relatively wide and short electrodes, which results in relatively low ESR, so the actual increase in ESR is typically negligible in comparison to standard configuration MLCCs of similar VRated.  Since FE design results in MLCCs having at least two internal capacitors in series, each of the internal capacitors must short in order for the FE MLCC to have an internal short, which is highly unlikely, making FE MLCC highly desirable for applications that are sensitive to short-type failures.  Thus, in comparison to standard configuration MLCCs; with careful design, it is possible to achieve high VRated with minimal increase in ESR and decrease in C/V.  

Figure 4.  Effects of floating internal electrodes on capacitance, ESR and rated voltage

In Summary

Floating electrode (FE) or cascade internal electrode designs may be used to increase VRated of MLCCs with minimal impact on ESR and capacitance per unit volume (C/V) in comparison to standard configuration MLCCs.  Additionally, FE designs largely reduce or eliminate the possibility of short-type failures and thus are valuable in battery line and other critical applications.  For these reasons, floating electrode or cascade electrode designs are typically superior to standard configuration designs for high voltage applications.

Tags: High Voltage, Capacitors, Ceramic, MLCC

Testing High Capacitance Multilayer Capacitors, Measurement, Accuracy – Part 3

Posted by Nathan Bailey on August 12, 2014

22 

 

This is Part 3 of a Four Part Series

Hello fellow engineers and circuit problem solvers. We have a lots going on ‘round here and as we keep adding important and relevant data to our website and catalog. Just like you, there is much more to do but we are well on our way and making improvements in many areas. This month’s blog is #3 in a series of 4 related blogs regarding the testing and best practices for testing high value or high capacitance MLCC’s. This month will blog will expand on the information we have discussed and the 4th in the series will end with a general summary of all the aforementioned best practices for testing these high value MLCC’s.

What happens when you attempt to measure a high value MLCC with an LCR tester not suited (i.e.- it does not have and adequate power supply to provide the DUT the with the necessary rms test voltage) for measuring high value MLCC’s with low Z and ESR? Answer: The tester will not supply the necessary AC test voltage and it will drop below a minimum specified level to provide the DUT with enough AC test voltage giving you an artificially low capacitance reading and leading you to believe that the capacitors are out of specification. You may set the test voltage to 1.0 V but many testers will not provide the true “selected” voltage and the actual test voltage applied to the DUT will probably be in the 0.3V-0.7V range due to the low impedance. Following is a graph of a table I supplied in the previous post on this subject showing capacitor impedance at 120Hz and 1kHz and the current required to the test voltage (Arms):


Table 1

figure1-post3 (1)

 

Figure 1

This graph from the previous data supplied reveals that the test voltage may be reduced from 1.0V AC to 0.5 V AC which will further extend the capability of a capacitance meter with regard to AC test voltage. One of the question I have heard is: Why do most manufacturers specify a test frequency of 120Hz and a test voltage of 0.5V AC above 10uF but specify 1KHz for 10uF and below? The answer is typically known to be from the fact that Tantalum capacitors were specified to be measured at 120Hz and 0.5V so therefore the specification for higher value MLCC’s ( >10uF) were also measured at the same and lower test frequency and Voltage.

 

The use of 0.5V AC test voltage instead of 1.0V may enable a more accurate measurement of capacitance for values over 10uF such as the 22uF, 33uF(not as commonly made or utilized in our industry), 47uF , 100uF, 150uF, and the 220uF which is highest value MLCC in our industry in a 1210 package. This is especially the case when the LCR meter only has an AC current capability of 20mArms as by the red dotted line in the presented graph. Some LCR testers have enhanced current capability that may deliver up to 200m Arms which will be more effective in obtaining accurate capacitance measurements when values exceed 10uF and above.

 

In the next bog and final of the series of 4, I will make a recommendation on testing what I consider the unique value on in our industry, the 10uF. So as a precursor, the 10uF has a test specification of 1KHz and 0.5Vrms but a 12uF or 15uF has a test frequency and voltage of 1.0V rms and 1KHz. So in a span of 2uF’s, you change it while the layer count will not increase proportionately to its value or build up of active area within the capacitor. We will discuss and summarize the results in the next blog so until then, happy specification investigating and problem solving!

Until next time…

Nathan

Tags: esr, lcr, capacitor, MLCC

Subscribe to Resource Center Updates